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Abstract. An extension of the Schur-Weyl duality connecting the representations of the 
symmetric and unitary groups is given. The Schur-Weyl basis is constructed using annihila- 
tion and creation operators. Three factorisation lemmas are derived. Their importance 
lies in the fact that they relate the phase freedoms within the Racah-Wigner algebra of 
the symmetric groups and the unitary groups. Extensions of the Regge symmetries are 
also given. These are expressed in five duality relations. 

1. Introduction 

The connection between the symmetric and unitary groups has been known since the 
work of Schur and Frobenius. Later, Weyl (1931,1946) showed that the Young 
symmetrisers developed for the symmetric groups may be used to obtain the irreducible 
representations (irreps) of the unitary groups (see also Murnaghan 1938). 

Weyl used this duality, gave numerous theorems concerned with irreps of both 
groups, and also gave applications to the many-body system of f equivalent particles. 
Such systems arise in many areas from molecular physics to elementary particle physics. 

The Schur function approach, however, makes the duality more apparent. These 
functions (Schur 1901, Littlewood 1940) had been studied by Jacobi, Trudi, Kostka 
and others under the name of bialternants long before Schur showed their connection 
with the characters of the symmetric and unitary groups. The use of the purely 
combinatoric properties of Schur functions is still proving fruitful in obtaining new 
identities and thus new computational techniques for character theory (see King 1970, 
Wybourne 1970, Butler and King 1973a, b, King et a1 1981, Black et al 1983). 

The duality goes further than that expressed by the Schur functions. Many powerful 
equalities between various transformation factors of the symmetric groups and those 
of the unitary groups can be established. 

Jahn (1950) was the first of many nuclear shell model theorists to use the duality 
to compute the jm and j symbols of a unitary group, work which was later much 
extended (Jahn 1954, Elliott et a1 1953, Kaplan 1962a, b, Horie 1964, Kramer and 
Seligman 1969b, Vanagas 1971). Results are derived using the Young symmetrisers 
of the symmetric group as projectors for the unitary group. 

Kramer ( 1967) used explicit transformations between the bases defined in terms 
of different symmetric group chains to define his f symbol (our resubduction factor) 
for a symmetric group. He showed that the f symbols were essentially equivalent to 
recoupling coefficients (6j and 9) symbols) for any unitary group (Kramer 1968) and 
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further that f symbols were also equal to coupling coefficients (3jm symbols) for 
U,,, 2 U, x U,. The symmetry properties of the symmetric group f symbol together 
with the duality result gave the origin of the Regge symmetries for the 6 j  symbols of 
SU2, and for the 3jm symbols of S U 2 2 U ,  (equivalently S032S02) (Kramer and 
Seligman 1969a). 

A simpler formulation of the various transformations followed using the concept 
of double coset (DC) generators of the symmetric group (Kramer and Seligman 1969b). 
Sullivan (1973, 1975a, b, 1976, 1978a, b, 1980) has formulated the general theory of 
DC decompositions developing many more duality results. 

In this paper we further extend the Schur-Weyl duality. The group theory and 
transformation theory that we require have been given in a previous paper (Haase 
and Butler (1984). Section 2 presents a construction of the Schur-Weyl basis using 
creation and annihilation operators. Three factorisation lemmas are derived in 0 3. 
Arising in these lemmas are three ‘symmetric group - unitary group duality factors’ 
which have been omitted or assumed to be unity by previous authors. The importance 
of these factors lies in the fact that they relate the phase and multiplicity freedoms 
within the Racah-Wigner algebra of the symmetric groups to similar freedoms for the 
unitary groups. 

For some phase choices these duality factors are not unity. One of several important 
topics is the distinction between U, and SUP. The duality relations of Kramer and 
Seligman, and of Sullivan, are derived directly from our lemmas in § 4. The relations 
give extensions of the Regge symmetries of the SU2 6 j  symbols and the SU2 2 U I  3jm 
symbols, to all unitary groups. 

2. The Schur-Weyl basis 

The dual structures of the symmetric and unitary groups may be exhibited in the 
language of creation and annihilation operators (Jordan 1935, Schwinger 1952, Baird 
and Biedenharn 1963, Moshinsky 1963). One constructs a Hilbert space to carry 
representations of the symmetric group Sf and the unitary group U,. Lezuo (1972) 
has used such a realisation to study S, X U3. The creation operator formulation makes 
the Schur-Weyl duality quite apparent. 

In this ‘second quantisation’ notation, the single-particle basis states are given by 
boson (or fermion) creation operators acting on a suitably defined vacuum state IO) 

a: IO) ( l s k s p ) .  (2.1) 

These operators have the usual commutation (or anticommutation) relations 

Using these basic relations the p2 operators, 

F k r P  ULU,, l s k , l ~ p ,  (2.4) 
are found to satisfy the commutators 

[ F k l ,  F m n 1 =  S l m F k n  - SknFlm*  (2.5) 
Hence the Fkl are closed under commutation and describe the Lie algebra of U,,. The 
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p basis states a: (0) transform as the defining irrep E ,  = (1) of U, and we may write 

a: (0) = le,k) ( k  = 1, . . . , p ) .  (2.6) 

The f-particle basis states are constructed by a tensor product of f-boson (or 
fermion) creation operators acting on the vacuum state 

10) 3 10) . . . 10) ( f  times), (2.7) 

a:: . . . a;;\o>, (2.8) 

These creation operators have similar properties to those of single-particle creation 
where a’kf creates the ith particle in the basic state ki (1 9 i sf, 1 c ki C p ) .  

operators 

a‘ k = - (a;) : ’ ,  (2.9) 
(2.10) 

(2.11) 

The p’ f-particle states transform according to the f-Kronecker product irreps E’, E 

E, x . . . X E, ( f times) of U’, = U, X . , . XU, ( f times), We may thus label the states as 

a:: . . . a;;)O) = Iepkl). . . /Epkf)  (2.12) 

= Iefpk, . . . k j ) ,  1 s  k l , .  . . , k j s p .  

A realisation of the generators of both U, and S j  can be constructed from the creation 
and annihilation operators. The generators have well defined actions on all f-particle 
states. The set of p 2  operators 

Fkl = ai ia; ,  l s k , f s p ,  (2.13) 
i = l  

generate under commutation the Lie algebra of U, while the transposition operators 

T~~ = C a k  a 1 alak, 1 s i, js f, (2.14) ti  ti i j 

k, 1 

generate the symmetric group Sp The f-Kronecker product space E:  thus furnishes 
a p’-dimensional representation space for both U, and S ,  

Most importantly, since each operator of U, in this realisation commutes with each 
operator of S ,  the space e’, is a representation space for the direct product group 
SfXU,, which we call the Schur-Weyl group. The standard result (Weyl 1931, 
Murnaghan 1938, Littlewood 1940) is that we have a unique decomposition of e;  into 
subspaces which transform irreducibly under the action of the operators of the Schur- 
Weyl group. Each irrep of Sf X IJ, in E ;  can be labelled 

x A ’  (U,) (2.15) 

where A is a partition of f into not more than p parts, ( A )  = ( A 1 A 2 . .  . A p )  with 
A , 2 A 2 2  . . .  3 A p 2 0  and A l + A 2 +  . . .  A p = f  The result central to the duality is that 
each irrep A(Sf) occurs with a unique irrep h’(U,) and vice versa. The representation 
labels of symmetric and unitary groups are usually chosen so that this uniqueness is 
emphasised, i.e. by using the same partition A ‘  = A. The occurrence of each irrep 
A(Sf) X A(Up) is multiplicity free. Hence we have the following transformation of basis 
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for the space E;, 

(2.16) 

where i (respectively I )  labels the basis of irrep space A of S ,  (respectively U,). An 
explicit reduction may be obtained via the application of Young symmetrisers. 

The action of the operators T X F  in their representation of SfXU, on this basis, 
which we call the Schur-Weyl basis, is given by 

T X FI&f,AiAl) = Ie’,Ai’Al‘)A ( T ) ” , A  (F)”’ (2.17) 

where A (  T ) ” ,  and A (I=)“/ are elements of a standard irreducible matrix representation 
A of S ,  and U, respectively. For convenience we write the Schur-Weyl basis as 

(2.18) 

No choice of basis within the irrep spaces of either S ,  or U, is implied in the above. 
Of course, special bases do exist for both groups. The most important are known as 
the Young-Yamanouchi basis ( S ,  2 S f - ,  X S, 2 S f - 2  X S I  X S I  . . .) for the symmetric 
groups and the Weyl-Gel’fand basis (U, 2 Up-, X U, 2 Up-* X U,  X U,  3 .  . .) for the 
unitary groups. The latter has been used extensively by both Moshinsky and Biedenharn 
and their several collaborators. In the following we obtain the results that are valid 
for bases chosen with respect to subgroups that are direct product groups of a less 
restricted nature. 

3. Transformation factors for three groupsubgroup chains 

We produce three types of transformation which take the Schur-Weyl basis states 
IEfpAihl) into one of the following groupsubgroup schemes: 

( 1 )  The dissociation of the space E’, into the direct product of E $  with E+ (f = f, + 

(2) The transformation E’, + E’,] X E’,, ( p  = p 1 p 2 )  obtained by the reduction E, + 

E,> X E& in U, 2 U,, X U,. 
(3) The transformation E ;  +$, ( { ) E :  X E ~  ( 4 = p - 4 ,  f = f - t )  obtained by the 

reduction-&,+ E, O,+O, - eq in U, 2 U, XU, where ({) =f! / ( t ! f -  t ! )  is the multiplicity 

The uniqueness of the Schur-Weyl basis determines three transformation factors 
which we will call duality factors. The numerical values of these factors depend only 
on the phase and multiplicity choices within the Racah-Wigner algebra of the symmetric 
and unitary groups (Haase 1983). 

Consider the first group-subgroup scheme depicted in figure 1.  The irrep space 
E’, is isomorphic to the direct product of E $  and E $  with f =f i  + f 2 .  Each Kronecker 
product space is decomposed to its corresponding Schur-Weyl basis. The subgroup 
S ,  X S ,  x U, is obtained by the subduction Sf 2 S ,  X Sf2 (f = f ,  +f2) on the left side of 
figure 1 and by the coupling U p X U p ~ U p  on the right side of figure 1.  Both the 
coupling and subduction processes are given by the outer multiplication of Schur 

f2).  

of E ;  x &;. 
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‘2 x v is, x U, I 

Figure 1. Where f = f, + f 2 .  

functions (the Littlewood-Richardson rule (Littlewood 1940, p 94)) 

It is well known (Weyl 1931, theorem 3, p 339) that if the representation A X p  of Up 
contains the irrep v exactly m,”,, times then conversely the irrep v of S j  contains, on 
subduction to S j l  x Sf,, the irrep A X p exactly m,”, times. 

Comparing figure 1 with figure 1 of Haase and Butler (1984), we find that the 
following lemma is just an application of (2.14) and (2.15) of that paper. 

Lemma 1. The duality factor of figure 1 is given by 

where we have written 

(3.2) 

(3.3) 

The duality factor is an element of a square matrix of dimension m%. This number 
depends on the partitions A, p, v and the group orders f l ,  f2, f, p ,  and is given by the 
Littlewood-Richardson rule. 

Our second duality factor is obtained by considering the transformation between 
the bases of Uf, 3 Sf XU, 3 S ,  XU,, XU,, and Uf, 3 U{, XU;, 3 Sf XU, XSf  XU, 3 

Sf X U,, X U, (figure 2). The first basis involves the subduction A to A I  X A 2  of U, 3 U,, X 
U, with p1p2  = p  while the second couples A ,  X A 2  to A in S ,  Both processes are given 
by the inner multiplication of Schur functions, 

Applying (2.14) and (2.15) of Haase and Butler (1984) to figure 2 w derive the 
following lemma. 
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i 
4 A )= 

aA111A212 
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~ f p , ~ f p ,  g 2 ) D p , . ( k  A I A d s .  

1 1 0 1 7  Figtlre 2. Where p = p 1 p 2  

(3.4) 

where we use the notation 

This duality factor is also an element of a square matrix of dimension gi lA2 given by 
the inner multiplication of Schur functions. This factor depends only on the partitions 
A ,  A , ,  A 2  and group orders f, p,  pl,  p2.  The label f is implicit in each A, A l ,  A 2  since 
each must be a partition of f 

The third duality factor is obtained by the reduction (figure 3) + E, O,+O, E ,  

under U,, 2 U, XU, where 4 = p - q and 0,, 0, are the identity irreps of U, and U, 
respectively. The f-Kronecker product space ~ f p  + ( E ~  0, + 0, E , ) ~  is expanded as a 
direct sum of direct product spaces E: X E: .  That is, we have 

( E q * O , + O , '  q)f= 
r = O  

(3 .6)  

where for fixed t, the multiplicity of E :  X E :  in E ;  is ({) =f!/t!7!. After reducing each 
Kronecker product group to its corresponding Schur-Weyl group, (see figure 3) we 
can then perform for each t the induction S, X Si into S, This step can be understood 
by recognising that the basis vectors Iefpr,E;pjpm&vkvn) ( r ,  = 1,. . . , ({)), for fixed 
U, X U, basis vector labels ( p m v n )  and varying ( r j k )  labels, are the basis vectors of 
the induced representation p X v of S ,  X S i  in Sp (This replication of S, XS? is the 
reason for placing r, in figure 3 as a basis label of S, XU, x Si XU, rather than a 
branching multiplicity label of U', 3 U; X U:.) The induced representation space is 
reducible in S,; its constituent irreps are given by the outer multiplication of Schur 
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apmvn 

functions 

{ I L } W ) = C  m;JAh 

The dimension of the induced space is (Wybourne 1970, equation (45)) 

mn 
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(3.7) 

An explicit construction of the induced representation space can be obtained using 
coset theory (Coleman 1966, 1968, Bradley and Cracknell 1972) but this is not 
necessary in our approach (see Haase and Butler 1984). 

An alternative labelling of basis vectors is given by the GH basis U; 2 S ,  XU, 2 Sf X 
U, XU,. The outer multiplication of Schur functions also determines the U, 2 U, XU, 
reduction. The application of Haase and Butler (1984, equations (2.14) and (2.15)) 
to figure 3 provides the third lemma. 

11019 Figure 3. Where p = q + q , f = f + i .  

(3.9) 

(3.10) 

is an element of a square matrix depending on partition labels A, p, v and group orders 
f, q, 4, p.  It is of dimension mi,, given by (3.1). 

We have defined three different duality factors which can be seen to connect the 
Racah-Wagner algebra multiplicity phase freedoms of the symmetric and unitary 
groups. Another way to interpret these lemmas is that they describe how to change 
any particular choice of unitary group branching and product multiplicity phases into 
a particular symmetric group multiplicity choice. Section 4 develops the powerful 
equalities between various transformations of the symmetric group and those of the 
unitary groups. 
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ijk 

r2P, rl A 1 
E ~ E $ E $  ~ V T  ) and 

4. S, x U, duality results 

ijk 

r, v, r3A I 
&2&$&$ pur ). (4.2) 

In this section we derive five duality relations giving the precise relationship between 
unitary group transformation factors and corresponding symmetric group transforma- 
tion factors. The importance of these duality results is illustrated in the numerical 
equivalence via duality factors of an infinite number of transformation factors of 
different unitary groups. These relations include the extension of the Regge symmetries 
of SU2 and SU2 2 U1 to symmetries for all unitary groups. After each statement of a 
duality relation we give an outline of its derivation. 

Relation 1 .  The resubduction factor of the symmetric group scheme of figure 4(a)  
equals to within four duality factors a recoupling factor of U, (figure 4( b ) ) .  

This produces the unitary group recoupling factor (see Haase and Butler 1984, 
equation (2.19)). Using lemma 1 four times, the couplings in U, are replaced by 
symmetric group subductions. The product multiplicity labels r l ,  r2,  r3 ,  r4 are changed 
to symmetric group branching multiplicity labels b l ,  b2, b3, b4. The overlap between 
the resulting basis vectors, 

produces the Sfl+h+fi resubduction factor (see Haase and Butler 1984, equation 
(2.21)). 
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Relation 2. A recoupling factor of S ,  figure 5 ( a ) ,  equals to within certain duality 
factors a resubduction factor of the unitary group scheme of figure 5 (  b). 

(4.4) 

The proof is obtained by considering the overlap between the basis vectors 

(4.5) ) *  4 A ) and I&', A 
i i 

uA 1 2 (a12A 1 I1 A212) A 3 l3 a " \ l l l h 2 3 ( a 2 3 A 2 1 2 h 3 / 3 )  

This gives the unitary group Uplh0 resubduction factor (Haase and Butler 1984, 
(2.21)). Using lemma 2, each of the unitary group branching labels a,,, a233 a, U '  can 
then be replaced by symmetric group product labels s12, ~ 2 3 ,  s. s'. The Sf recoupling 
factor is determined from the overlap of the resulting basis vectors 

s12A12sAi  
EfplEfp,&fp3 A 1 A 2 A 3  ) and 

11 1 2 4  

(see Haase and Butler 1984, equation (2.19)). 

Relation 3. A reinduction factor of the symmetric group scheme for figure 6(a) equals 
to within certain duality factors a resubduction factor of the unitary group scheme of 
figure 6 ( b ) .  

( (PO)?  SI kb 7, ?%A I P ( a 7 ) ? s 3  v, ?&A )f, +f2+f3 

= D P I 2 + P 3  ( A ,  P 7 ) s 2 P 2 D p , + p 2  (P,  P d s L 1 ( A a 2 P  ( W O )  7 1 h a 4 P Y ( a 3 ~ 7 ) ) p , + p 2 + p 3  

x DPl+h3 ( A ,  P V )  t'4S4D,D*+p3 (v, u 7 ) t 4 3 s 3 .  (4.7) 

The proof is initiated with the overlap of the basis vectors 
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t S* P,t s2A i 
& P E P 1  f f ,  & f 2  P2 &f3 P3 par  ) and 

lmn 
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&f P & f l  PI &f2 P2 & f 3  P, (4.9) 
lmn 

Figure 7. Where ( f = f l + f i )  and ( p = p I p 2 ) .  
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SA bpjvk 

11 12 

& f p I & f p 2  A l A 2  ) and 

Consider the scalar product between the two basis vectors 

(4.12) 
bl b2pl Y ~ c L ~ ~ ~ s ~ s ~ P I v ~  

11 12 

4 4 2  A l A 2  

(p;;T p;y 70 r+i 

& f l  P P  &f2 E ) and 
rAapmvn 

(4.14) 
kk' 

& f l  P P  E f 2  TU 

( a * P ~ 4 2 w L ) r , r 2 P ~ v n  
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t sAbrkuk' 

4 l + P 2 E ; l 4 2  pv ) and 
mn ). 

( b l P 4 2 d  t S l S 2 . r k U k '  

4 1  +PZ E ;I E b, PV 
mn 

5. Conclusions 

In this paper we have shown the precise relationship between various symmetric group 
transformation factors and combinatorically equivalent unitary group transformation 
factors. We have summarised these in table 1. 

Table 1. Duality relationships. 

Resubduction S,l+,2+,i 
Recoupling ( 6 j )  S, 
Reinduction S ,  X S, x S ,  
Coupling ( 3 j m )  S,,, ,  
Induction S,, x S,, 

= recoupling ( 6 j )  U, 
= resubduction U,,,,,, 
= resubduction Up,+p2+,l 
=coupling ( 3 j m )  U,,,, 
=coupling ( 3 j m )  U,,,,, 

The presence of the three duality factors complicates the dual relationship. We do 
not expect to be able to choose the duality factors unity even in cases without multiplicity 
where the factors are of modulus one. This follows from the fact that the duality 
factors may be related to the permutation and conjugation matrices of the various 
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groups. Certain phase choices within the Racah-Wigner algebra of an arbitrary compact 
group (Butler 1975, 1981) have been made to simplify these permutation and complex 
conjugation symmetries of the 3jm and 6j  symbols and their calculation. In particular, 
since the irreps of the symmetric groups are reaJ orthogonal, all 3jm and 6 j  symbols 
can be chosen real. For the unitary groups the unity choice of the Derome-Sharp 
A-matrix simplifies the complex conjugation symmetry and hence the use of 3jm and 
6j  symbols but forces imaginary values (Bickerstaff et a1 1982). Furthermore, the 
p-valued representations of U, are isomorphic to irreps of U, X SUP and 3jm (respec- 
tively 6 j )  symbolsfor U, can be factorised into a product of U, and SUP 3jm (respectively 
6j) symbols. This depends on a factorisable phase choice which although always 
possible is not always used (Baird and Biedenharn 1964. So and Strottman 1979). 

The determination of the duality factors is very much related to the phase choices 
for U, or SUP and S ,  Whether or not it is possible to give a simple structure to the 
duality factors awaits further study (Sullivan 1983). 
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